Parameterizing PI Congestion Controllers

Ahmad T. Al-Hammouri, Vincenzo Liberatore, Michael S. Branicky
Case Western Reserve University

Stephen M. Phillips
Arizona State University

April 3, 2006

Support by: NSF CCR-0329910, Department of Commerce TOP 39-60-04003, NASA NNC04AA12A, and an OhioICE Training grant

Contributions of the Paper

- Complete stability region for PI
- Presents examples that show
 - Different stable PI parameters exhibit widely different control performance
 - Neglecting delays in control design leads to unstable systems
TCP-AQM Control Loop

TCP source → Router ← TCP sink

Plant

\[P(s) = \frac{q(t)}{s(t - cwnd/RTT)} \]

On Ack
\[cwnd += 1/\text{cwnd} \]

On loss
\[cwnd /= 2 \]

Controller

\[G(s) = \frac{k_p + k_i}{s} \]

On Ack
\[q(t) = \Sigma x(t) - C \]

On loss
\[q(t) = 0 \]

On Ack
\[q(t) = B \]

On loss
\[q(t) = q_0 \]

Integral term eliminates the steady-state error

\[u(t) = k_p \cdot e(t) + k_i \int_0^t e(\tau) d\tau \]

\[G(s) = k_p + k_i \]

\[P(s) = \frac{q(t)}{s(t - cwnd/RTT)} \]

\[q(t) = \Sigma x(t) - C \]

\[q(t) = 0 \]

\[q(t) = B \]

\[q(t) = q_0 \]

PI AQM [Holot et al 2001]

- PI vs RED
- Control signal:
 - \[u(t) = k_p \cdot e(t) + k_i \int_0^t e(\tau) d\tau \]
- Frequency transfer fn:
 - \[G(s) = k_p + k_i \]
 - \[P(s) = \frac{q(t)}{s(t - cwnd/RTT)} \]
 - \[q(t) = \Sigma x(t) - C \]
 - \[q(t) = 0 \]
 - \[q(t) = B \]
 - \[q(t) = q_0 \]
Parameterizing PI AQM

- Problem:
 - Determine the **entire region** of stabilizing k_p and k_i values

- Objectives:
 - Stable closed-loop system
 - Enhanced closed-loop performance
 - Steady-state error, convergence time, overshoot

- Challenges:
 - Delays

Contributions of the Paper

- **Complete stability region for PI**
 - Presents examples that show
 - Different stable PI parameters exhibit widely different control performance
 - Neglecting delays in control design leads to unstable systems
Complete Stability Region S_R [Silva et al 2005]

- $S_R = (S_0 \setminus S_N) \setminus S_L$
- S_0:
 - Stability region for the delay-free system
 - $P_0(s) = \frac{B}{(s + \alpha)(s + \beta)}$
- S_N:
 - $\{(k_p, k_i)\}$:
 $$\lim_{s \to \infty} \left| \frac{G(s)P(s)}{s(s + \alpha)(s + \beta)} \right| B \leq 1$$

Determination of S_L

- Set of k_p and k_i’s that destabilizes the closed-loop for delays less than d_0
- For given k_p and k_i
 - Find d that gives the blue curve
 - If $(d \leq d_0)$, $(k_p, k_i) \in S_L$
 - Else, $(k_p, k_i) \notin S_L$
- Sweep $\forall (k_p, k_i) \in S_0$
Complete Stability Region S_R

- $S_R = (S_0 \setminus S_N) \setminus S_L$

Contributions of the Paper

- Complete stability region for PI
- Presents examples that show
 - Different stable PI parameters exhibit widely different control performance
 - Neglecting delays in control design leads to unstable systems
Example 1

- $N = 75; \ d_0 = 0.15 \text{ sec}; \ C = 1250 \text{ pkt/sec}$

Contributions of the Paper

- Complete stability region for PI
- Presents examples that show
 - Different stable PI parameters exhibit widely different control performance
 - **Neglecting delays in control design leads to unstable systems**
Example 2 [Heying et al 2002]

- \(N = 60; \ d_0 = 0.22 \text{ sec}; \ C = 1250 \text{ pkt/sec} \)

PIP Controller [Heying et al 2002]

\[
q(s) \quad e \quad G(s) \quad u \quad P(s) \quad q'(s)
\]

\[
q_0 + _e \quad u \quad P(s) \quad q'(s)
\]

\[
G(s) \quad P(s) \quad q'(s)
\]

\[
q(s) \quad e \quad G(s) \quad u \quad P(s) \quad q'(s)
\]

\[
K_h
\]

\[
K_h
\]

\[
K_h
\]

\[
K_h
\]

Ahmad Al-Hammouri
Parameterizing PI Congestion Controllers
Feb/BD’06

Ahmad Al-Hammouri
Parameterizing PI Congestion Controllers
Feb/BD’06
Future Work

- Conduct packet-level simulations (ns-2)
- Define a “Networks Performance” objective function
 - Optimize the objective function over the stability region
- Analyze the queue nonlinearity (i.e. truncation)

Thank You

- Questions
- Comments