Decentralized and Dynamic Bandwidth Allocation in Networked Control Systems

Ahmad T. Al-Hammouri, Michael S. Branicky, Vincenzo Liberatore
Case Western Reserve University

Stephen M. Phillips
Arizona State University

April 25, 2006

Support by: NSF CCR-0329910, Department of Commerce TOP 39-60-04003, NASA NNC04AA12A, and an OhioICE Training grant

Paper Overview

- Control over Networks
 - NCSs, DCSs, SANETs, ...
- Control of Networks
 - Efficient BW allocation
 - Congestion control
 - Fairness
- We propose a “Cof N” scheme to better serve “Cover N”
Control over Networks

Control over Networks
Control over Networks

- Remote interaction (monitoring & control) with the physical world

- Applications:
 - Industrial automation & process control
 - Space exploration, e.g., telerobotics
 - Smart homes
 - Medical sensing & surgical simulations
 - Automatic asset mgmt. (RFID)

Control of Networks (Scope of the paper)

- A bandwidth allocation scheme

- Objectives:
 - Stability of control systems
 - Efficiency & fairness
 - Fully distributed, asynchronous, & scalable
 - Dynamic & self reconfigurable

- Formulating the scheme in CT
 - NCSs regulate h based on congestion fed back from the network
Problem Formulation

- Define a utility fn $U(r)$ that is
 - Monotonically increasing
 - Strictly concave
 - Defined for $r \geq r_{\text{min}}$
- Optimization formulation

$$\max \sum_i U_i(r_i)$$
$$\text{s.t. } \sum_{i \in S(l)} r_i \leq C_l, l = 1, \ldots, L$$
$$\text{and } r_i \geq r_{\text{min}}, i$$
Distributed Implementation

- Two independent algorithms
 - End-systems (plants) algorithm
 - Router algorithm (later on)

\[r(p_i) = 1/h = \left[U^{-1}(p_i)\right]_{r_{\min}}^{r_{\max}} \]

NCS-AQM Control Loop

Model Plant

\[P(s) = \frac{B}{s} e^{-sd} \]

Queue Controller

\[G(s) \]
Queue Controller $G(s)$

- Proportional (P) Controller

 $G_p(s) = k_p$

- Proportional-Integral (PI) Controller

 $G_{pi}(s) = k_p + \frac{k_i}{s}$

Determination of k_p and k_i

- Stability region in the k_i–k_p plane

 Stabilizes the NCS-AQM closed-loop system for delays less or equal d

- Analysis of quasi-polynomials, $f(s, e)$
Simulations & Results

50 NCS Plants:

\[\frac{dx}{dt} = ax(t) + bu(t) \]

\[U(r) = \frac{a - bK}{a} e^{ar} \]

\[r_{\text{min}} = \frac{a}{\ln \left(\frac{bK + a}{bK - a} \right)} \]

- \[u(t) = -K(R - x(t)) \]

- [Branicky et al. 2002]
- [Zhang et al. 2001]

Simulations & Results (cont.)

- [Branicky et al. 2002]
- [Zhang et al. 2001]
Thank You

- Questions
- Comments

- Probing further:
 http://start.case.edu/~vx111/NetBots